Vacuum Systems for Diamond

Design of the Vacuum Systems for Diamond
The UK 3rd Generation Light Source

Ron Reid

ASTeC Vacuum Science Group
Daresbury Laboratory, Warrington, UK

Annecy, 27th-28th January 2003
Vacuum Systems for Diamond
What is Diamond?

- a 3rd generation synchrotron light source
 - an electron storage ring (3GeV, 300 mA, 2.7 nm-rad)
 - injector train
 - linac (100 MeV)
 - booster synchrotron (3GeV)
 - transfer lines
 - experimental beam lines
Vacuum Systems for Diamond Project Organisation

- Diamond will be owned and operated by a joint venture company, Diamond Light Source, Ltd. (DLS)
 - UK Government (86%)
 - Through Office of Science and Technology
 - Nominated shareholder CLRC
 - Wellcome Trust (14%)
Vacuum Systems for Diamond

Where is Diamond?

- Diamond (RAL)
- ASTeC (DL)
Vacuum Systems for Diamond

The Building

Annecy, 27th-28th January 2003

Pictures courtesy of JacobsGIBB Ltd/Crispin Wride Architectural Design Studio.)
Vacuum Systems for Diamond
General Layout
Vacuum Systems for Diamond
Project Timescales

• Design Study completed March 2002
• Building work starts March 2003
• Machine build starts September 2004
• Machine complete for commissioning January 2006
• Beam for users – 7 beam lines January 2007
• Build up approx 4 Beam Lines per annum thereafter
Vacuum Systems for Diamond
Basic Vacuum Parameters

• **Injector**
 - \(~10^{-8}\) mbar

• **Storage Ring and Front Ends**
 - **Base Pressure**: \(~10^{-10}\) mbar
 - **Operational Pressure**: \(~10^{-9}\) mbar (300mA)
 - **Gas Scattering Lifetime**: \(~35\)h
 - **Overall Lifetime**: \(~24\)h

Annecy, 27th-28th January 2003
Vacuum Systems for Diamond
Vacuum Design Objectives

• To obtain minimum lifetime of 10 hours after 100 Ah conditioning
 ▪ 10^{-9} mbar at 300 mA
 ▪ No *in situ* bakeout
• To use proven (conventional) materials, design methods, techniques
• To achieve as much modularity as possible
• To use, wherever possible, standard, commercially available vacuum equipment
Vacuum Systems for Diamond
Evolution of the Design

- Originally
 - Lumped Photon Stops with close coupled pumping
- Finally
 - Crotch absorbers with high pumping
 - Distributed absorbers
 - No true distributed pumping
Vacuum Systems for Diamond Materials

• **Stainless Steel**
 - Most vessels fabricated
 - Economical
 - Well understood
 - Familiar to UK and European industry
 - ? 304L; 304LN; 316L; 316LN

• **Aluminium**
 - Extruded narrow gap ID vessels
 - Critical Tolerances
Vacuum Systems for Diamond
To bake or not to bake?

After 25 years operating experience of the SRS
• Useable lifetimes after modest beam conditioning
 ▪ Comparable to time spent carrying out a bake
• Good lifetimes after about 100 Ah conditioning
 ▪ Even following substantial machine rebuilds with many new components.
• Current practice at other light sources divided
Vacuum Systems for Diamond Technology

- **Pumping**
 - Ion Pumps, probably differential diodes
 - TSPs – good experience
 - Lumped NEG
 - Sputtered NEG for narrow gap ID’s
 - Clean roughing
- **Gauging**
 - Pirani
 - Inverted Magnetron
 - RGA
Vacuum Systems for Diamond
Vacuum flow diagram of an arc
Vacuum Systems for Diamond
Calculated Pressure Profile

Annecy, 27th-28th January 2003
Vacuum Systems for Diamond Girder Arrangement

Annecy, 27th-28th January 2003

Vacuum 16
Vacuum Systems for Diamond
Vacuum String

Annecy, 27th-28th January 2003
Vacuum Systems for Diamond Dipole Vacuum Chamber

Annecy, 27th-28th January 2003
Vacuum Systems for Diamond Tapers

Annecy, 27th-28th January 2003
Vacuum Systems for Diamond
Typical Beam Line Layout
Vacuum Systems for Diamond
Beam line front end vacuum design

Annecy, 27th-28th January 2003
• Day 1
 ▪ Four *in vacuo* permanent magnet undulators
 ◆ Three 0.7T, 2m length, 7mm nominal gap, 1.7kW
 ◆ One 0.8T, 2m length, 7mm nominal gap, 2.2kW
• Adopt ESRF Design
Vacuum Systems for Diamond
The Team

The work summarised here is heavily reliant on

The ASTeC Vacuum Science Group

Joe Herbert
Oleg Malyshev
Keith Middleman
Eshraq Al-Dmour
Andy Eales

and the

Mechanical Design Engineers.