Yuri
Saveliev
 
 
No
 
No
 
No
 
Yes
Dr Yuri Saveliev joined ASTeC in January 2006 after a long career in pulsed power where he concentrated on development of high current electron sources of explosive emission and secondary emission types (Efremov Institute, Russia; University of St. Andrews). He was also a project manager for the ALPHA-X consortium based at the University of Strathclyde.

At Daresbury Laboratory, his major efforts aimed at commissioning and R&D on ALICE. Until the machine closure in 2016,he lead the ALICE physics programme and made significant contributions to the success of the science programme that included EMMA accelerator and IR FEL commissioning, biological experimental programmes that employed THz and infra-red light from ALICE.

Since January 2017, Yuri Saveliev is a leader of the Accelerator Diagnostics and Instrumentation group at ASTeC. He is also leading the Dielectric Wakefield Acceleration programme on newly built machines at Daresbury Laboratory - VELA and CLARA.

Yuri Saveliev is an author/co-author of 37 publications in scientific journals.

Publications

[1]           E. I. Ivanov, I. R. Krylov, and Yu. M. Savelev. Differential version of the method of absorption of a weak oppositely travelling wave. Optics and Spectroscopy (USSR), 52, No2, 204 (1982).

[2]           A.G. Nikonov, I. M. Roife, Yu. M. Savel'ev, and V. I. Engel'ko. Operation of a magnetically insulated diode at long pulse lengths. Sov. Phys. Tech. Phys. 28, No4, 433 (1983). 

[3]           M. A. Vasilevsky, A. G. Nikonov, I. M. Roife, Yu. M. Saveliev, and V. I. Engelko. Production of the annular electron beam with 10-4 s pulse duration with the use of a multipoint explosive emission cathode. Pis'ma Zh. Tekh. Fiz., 9, No1, 26 (1983).

[4]           V. A. Burtsev et al. Generation of microsecond microwave pulses by relativistic electron beam. Sov. Tech. Phys. Lett., 9, No12, 617 (1983). 

[5]           G. Nikonov, Yu. M. Savel'ev, and V. I. Engel'ko. Detector for measuring the current density of a high-current microsecond beam. Instrum. and Exp. Tech., 27, No1, part 1, 29 (1984). 

[6]           O. A. Gusev et al. Shaping of high-current electron beams of microsecond duration. Sov. Atom Energy, 58, No5, 395 (1985).  

[7]           G. Nikonov, I. M. Roife, Yu. M. Savel'ev, and V. I. Engel'ko. Production of intense microsecond electron beams in a magnetron diode. Sov. Phys. Tech. Phys., 32, No1, 50 (1987).  

[8]           V. T. Astrelin et al. Operation of a magnetron diode with multipoint explosive emission cathode. Zh. Tekh. Fiz., 58, No3, 587 (1988) 

[9]           V. G. Kovalev, O. P. Pecherskii, Yu. M. Savel'ev, K. I. Tkachenko, and V. I. Engel'ko. Increasing the energy of a microsecond-range hollow relativistic electron beam generated by a multitip explosive-emission cathode. Sov. Tech. Phys. Lett., 14, No6, 488 (1988). 

[10]        V. G. Kovalev et al. Limitation on the duration of the electron beam formed in a high-current diode in an increasing magnetic field. Sov. Phys. Tech. Phys., 35, No1, 79 (1990). 

[11]        O. L. Komarov, Yu. M. Saveljev, V. I. Engelko, and P. Vrba. Influence of collector ions on operation of magnetically insulated diode. Laser and Particle Beams, 10, No3, 531 (1992).

[12]        V. G. Kovalev, O. P. Pecherskii, Y. M. Saveliev, K. I. Tkachenko, V. I. Engelko, and M. Chlupek. Performance of vacuum line with magnetic self-confinement at microsecond pulse duration. Zhurnal Tech. Fiziki, 62, No7, 121-133 (1992). -in Russian. 

[13]        Y. M. Saveliev, W. Sibbett and D. M. Parkes. Crossed-field secondary emission electron source. Physics of Plasmas, 4, No7, 2319 (1997).

[14]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, Self-excitation and operational characteristics of the crossed-field secondary emission electron source, Rev. Sci. Instr., Vol. 70, No 12, pp. 4502-4514 (1999).

[15]        Y. M. Saveliev, S. N. Spark, B. A. Kerr, M. I. Harbour, S. C. Douglas, and W. Sibbett, Effect of cathode end caps and a cathode emissive surface on a relativistic magnetron operation, IEEE Trans. Plasma Sci., Vol. 28, No. 3, pp.478-484 (2000).

[16]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, Spatial characteristics of electron beams from symmetric and nonsymmetric crossed-field secondary emission sources, J. Appl. Phys., Vol. 89, No. 3, pp. 1550-1555 (2001).

[17]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, Characterisation of electron beams produced by crossed-field secondary emission diodes, Japan. J. Appl. Phys., Vol. 40, Part 1, No. 2B, pp. 940-943 (2001).

[18]        Y. M. Saveliev, B. A. Kerr, M. I. Harbour, S. C. Douglas, and W. Sibbett, Operation of a relativistic rising-sun magnetron with cathodes of various diameters, IEEE Trans. Plasma Sci., Vol. 30, No. 3, pp. 938-946 (2002).

[19]        Y. M. Saveliev, W. Sibbett and B. A. Kerr, Production of sheet electron beams with crossed-field secondary emission diodes, IEEE Trans. Plasma Sci., Vol. 30, No. 5, pp. 1832-1836 (2002).

[20]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, Characterisation of sheet electron beams from planar crossed-field secondary emission diodes, Rev. Sci. Instr., vol. 74, No 9, pp. 3962-3967 (2002).

[21]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, Perveance of a planar diode with explosive emission finite-diameter cathodes, Appl. Phys, Lett., v. 81, no. 13, pp. 2343-2345 (2002).

[22]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, On anode effects in explosive emission diodes, Journ. Appl. Phys., vol. 94, No. 9, pp. 5776-5781 (2003).

[23]        Y. M. Saveliev, W. Sibbett and D. M. Parkes, Current conduction and plasma distribution on dielectric (velvet) explosive emission cathodes, Journ. Appl. Phys., vol. 94, No. 12, pp. 7416-7421 (2003).

[24]        Y. M. Saveliev and Y. E. Krasik, Comment on “Low level plasma formation in a carbon velvet cesium iodide coated cathode" [Phys. Plasmas 11, 1680 (2004)], Phys. Plasmas, pp. 5730-5733 (2004).

[25]        Y. E. Krasik et al. Characterisation of plasma on dielectric fibre (velvet) cathodes, J. Appl. Phys., v. 98, No9, Art. No 093308 (2005).

[26]        D. A. Jaroszynski et al. Radiation sources based on laser-plasma interactions.  Philosophical Trans. of the Royal Soc. A - Mathematical, Physical and Engineering Sciences, 364 (1840), pp. 689-710 (2006).

[27]        M. J. de Loos, S. B. van der Geer, Y. M. Saveliev et al. Radial bunch compression: path-length compensation in an rf photoinjector with a curved cathode. Phys. Rev. Special Topics - Accel. and Beams, 9, Art. No. 084201, (2006).

[28]        G. Priebe, D. Filipetto, O. Williams, Y. Saveliev et al. Status of the inverse Compton backscattering source at Daresbury Laboratory, Nuclear Instruments and Methods in Physics Research A, v.608, pp. S109-S112 (2009).

[29]        29. R. Barlow et al. EMMA - The world's first non-scaling FFAG.  Nuclear Instruments and Methods in Physics Research A, v. 624, pp. 1-19,  (2010).

[30]        S. Machida et al. Acceleration in the linear nonscaling fixed field alternating gradient accelerator EMMA. Nature Physics, No8, 243-247 (2012).

[31]        N.R. Thompson, D.J. Dunning, J.A. Clarke, M. Surman, A.D. Smith, Y. Saveliev, and S. Leonard. First lasing of the ALICE infra-red Free-Electron Laser, Nuclear Instruments and Methods in Physics Research A, vol. 680, pp. 117–123 (2012).

[32]        D. Laundy, G. Priebe, S. P. Jamison, D. M. Graham, P. J. Phillips, S. L. Smith, Y. Saveliev, S. Vassilev and E. A. Seddon. Results from the Daresbury Compton Backscattering X‐ray Source. Nuclear Instruments and Methods in Physics Research A, 689, pp. 108-114 (2012).

[33]        A.D. Smith et al. Near-field optical microscopy with an infra-red free electron laser applied to cancer diagnosis.  Appl. Phys. Let. , 102, 053701 (2013).

[34]        R. Williams et al. The influence of high intensity terahertz radiation on mammalian cell adhesion, proliferation and differentiation. Phys. Med. Biol., v.58, 373-391 (2013).

[35]        J. A. Clarke et al. CLARA conceptual design report, JINST 9 T05001 (2014).

[36]        Y. M. Saveliev, F. Jackson, J.K. Jones and J.W. McKenzie. Electron bunch structure in energy recovery linac with high voltage DC photoelectron gun. Phys. Rev. Acc. Beams , 19, 094002 (2016). 

[37]        F. Jackson, D. Angal-Kalinin, Y. M. Saveliev, P. H. Williams, and A. Wolski. Longitudinal transport measurements in an energy recovery accelerator with triple bend achromat arcs. Phys. Rev. Acc. Beams , 19, 120701 (2016).